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A method for two distributions mixture fitting is proposed. It has been proved by testing, that the 
method is for fitting of histograms more efficient than those using the moments of high orders. 

Techniques based on measurement of random-character variables and subsequent evaluation 
of their statistical characteristics have been increa~ingly used in studies of typical two-phase 
chemical engineering systems (gas-liquid, gas-solid). Valuable informations in the amplitude 
region can be obtained from histograms. Due to the mechanism of processes in two-phase sys­
tems - al ternative occurrence of individ ual phases in a given point of the equipment and stochastic 
nature of processes - resulting histogram corresponds to a mixture of two different frequency 
distributions. With an increasing number of variables influencing the process such a mixture 
can be viewed (according to the central limit theorem) as the mixture of two normal distributions. 

As examples temperature histograms obtained during studies of boiling mechanism1 , histo­
grams of porosity in bubble column reactors reflecting the presence of two different sets of bubbles 
formed by two different mechanisms2 , pressure histograms obtained by pressure transmitters 
in inhomogeneous fluidized beds containing dense phase and bubbles3 •4 , etc., may be given. 
To obtain data needed for mechanism eval uation and for individual system description, para­
meters of both distributions to which appropriate histograms are related have to be estimated. 

A similar problem can be encountered during the evaluation of experiments of the input 
signal-response output type if a distribution function corresponding to normal distribution 
is used for partial responses approximation. As an example we can mention e.g. the evaluation 
of a response signal obtained from the chromatographic analysis of a binary mixture in cases 
when the complete components separation cannot be accomplished by the choice of a proper 
packing or when packing of limited length has to be used due to time limitation. Similarly, the 
described procedure can be applied for spectrophotometric analysis of two components with 
overlapping spectra. 

The problem of resolution of the mixture of two normal distributions has been solved by numer­
ous authors. Several methods for both general and specific cases can be found e.g. in work by Co­
hen3 . These methods are based on the comparison between moments of experimental data and 
estimates of parameters of the two distributions. In the general case, when estimates of two mean 
values, two standard deviations and of the proportionality constant have to be obtained, it is 
necessary to determine the first five moments and to find a solution of a polynomial equation 
of the ninth order. The solution of the polynomial equation can be avoided using an alternative 
iterative procedure. According to this procedure initial estimates (based on the assumption 
of equal standard deviations) are used for the original system of moment equations. 
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Expe9iences with experimental data evaluation point out, however, the low estimation ac­
curacy especially for the higher-order moments. An alternative approach was therefore chosen 
to obtain a procedure for two normal distributions resolution which was developed as a part 
of ~y~tel:l software for on-line data processing on a desk calculator. The problem was formulated 
as a search for an extreme of the loss function following the preliminary procedure of numerical 
data filtration4 . The method can be modified easily for another type of distribution this being 
impossible in the case of the procedure based upon moment equations. If the type of dhtribution 
cannot be assumed a priori the most advantageous model can be automatically chosen on the 
basis of minimal loss function values. The non weighted sum of squares of deviations of experi­
mental data and model outputs is considered as the loss function. 

The aim of this work is to prove the feasibility of the direct estimation of para­
meters of a mixture of two normal distributions using the nonlinear optimization 
method. 

THEORETICAL 

Applying the least squares technique, the problem of estimation of parameters 
of the two normal distributions mixture can be transformed into the problem of non­
linear optimization in the space of parameters Q; vector of parameters @ E Q 

is co-ordinated to the regression equation (in general form) 

according to the condition 

I?S = [Y - tf(x, @" )]T [Y - tf(x, @")] = 

min {[Y - '1(x, p)]T [Y - '1(x, p)]} ; 
/lEn 

where p, @" are estimates of the vector 

(1) 

(2) 

@ = (C 1, C2 , 0'1' 0'2' Ill' 1l2)T corresponding to the case of the mixture of two normal 
distributions 

(3) 

where 

(4) 
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To solve the optimization problem 

. N I 

F(fJ) = L [Yj - '1(Xi' fJ)J2 = minimum (5) 
i= 1 

an arbitrary effective technique of nonlinear programming can be applied, the 
derivative-free procedure UNCOM (ref. 5) and the Gauss least squares method were 
used in our case. The UNCOM procedure fulfiles the demands both on the accuracy 
of e estimation and on the calculation speed.* 

Unambiguous resolution of the two distributions is generally possible in the case 
of existence of three local extremes of the function (3), more specifically of two 
maximums (existing in a vicinity of mean values J1.1' J1.2) and of a single minimum 
(lying between the two maximum values). A general relation for the extreme value x+ 

can be derived from the condition d'1(x, e)/dx = 0 in the form 

(6) 

where 

u (7) 

(8) 

Equation (6) can be written as 

(9) 

where 

{lo) 

* The method UNCOM seeks for an unconstrained extreme of a general nonlinear function. 
This method belongs to the group of derivative-free methods determining the local extreme 
of a function. A single-dimension search procedure based upon a specific form of a quadratic 
interpolation is used to determine the optimal length of step in the given direction from the given 
point. Considering the solution of the problem of parameter estimation for the mixture of two 
normal distributions, the UNCOM method proved to be suitable for implementation on a desk 
calculator (e.g. HP 9821 A). 
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(11) 

and the three extremes in question can be determined numerically or graphically 
as a common solution of functions z I( x) and Z r( x). As an example, the determination 
of the roots of Eq. (9) for C1 = C2 = 0·5, J1.1 = 4, J1.2 = 6 and 0'1 = (12 = (1 = 0·75 
and (11 = 0'2 = (1 = 0·90, resp., is shown in Figs la and lb. Apparently, a successive 
convergence of roots occurs with increasing value of (1 till finally full identity of roots 
takes place for (1 = (J1.2 - J1.1)/2 = 1 (triple root - maximum). In our symetrical 
case the condition 

llJ1. = J1.2 - J1.1 > 2a (12) 

has to be fulfilled for the existence of three different roots. These considerations 
are however valid only for the theoretical model described by Eq. (3) which is not 
affected by random disturbances (i.e. e = 0). 

The mean values J1.1 and J1.2 exhibit the best adaptability to the decrease of value 
of the objective function F(Il), to a less extent this is valid also for coefficients C1 

and C2 (for C2 condition (4) is valid). Initial approximation of standard deviations 
(11' (12 proved to be controlling for the rate of calculation. Whereas the initial ap­
proximations of parameter values J1.1 and J1.2 can be determined with relative accuracy 
(e.g. from a graphical record of pairs Xj, Yj ) it is very difficult to obtain appropriate 
estimations of al and (12. Both the initial estimation and the satisfactory solution 
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of the optimization problem (5) depend in principle on the feasibility of the two 
distributions resolution. The starting approximation of the values of calculated 
parameters can be obtained by different ways; in the paper we present a method 
which proved to be suitable in all cases solved. 

Our theoretical model can be written formally as 

Let us suppose that the coordinates of both peaks of the function (3) (assuming 
that they are at least visually distinguishable) can be with satisfactory accuracy 
considered as the coordinates of mean values J1.1' J1.2' The following approximative 
relations are valid for function values in both peaks (in agreement with Eq. (13)) 

Ymax 1 == Y(J1.11 0'1' J1.1' (f2' J1.2) = C I (J(27t) (fIt I + C2 Y2(J1.11 (f2' J1.2) , (14) 

Ym.x2 == Y(J1.21 0'1' J1.1' (f2' J1.2) = C2(J(27t) 0'2t 1 + C1Yl(J1.21 (fl' J1.1)· (15) 

The positions of peaks Ymax l' Ymax 2 can be determined and used as the initial estimates 
of J1.1 and J1.2' Initial estimates of coefficients C1 and C2 can be obtained on the basis 
of their properties-weights of individual distributions (see condition (4)), the ratio 
C dC2 corresponds to the ratio of subintegral areas of both distributions. Functional 
values of each of the two distributions are to a minimum extent influenced by the 
values of the other one in external halves of their interval. These external half­
-intervals can be therefore used for the estimation of the size of individual areas 
and the value of the coefficient C 1 can be determined from the relation 

C 1 == Aj(A + B) (16) 

where 

(17) 

(18) 

(19) 

.i~ll' im, .i~2 - sequence indexes of frequency interval. 
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For the determination of C2 the condition (4) is valid. The procedure based upon 
the use of complete half-intervals (Ill - x o), (XN - 1l2) yielded in all cases signi­
ficantly worse initial estimation of C) than the procedure working with the cut-outs 
(segments) (Ill - m), (1l2 + m) (see above). 

The estimation of values of the standard deviations 0'1,0'2 can be then based 
upon the estimated values of Ill' 1l2' CI and C2 (which consequently influences the 
estimation quality). The estimation procedure can be described by an iterative 
block. 

1 

---------1 

0'1 = CI!{[Ymax I - C2Y2(1l11 0'2' 1l2)] ~(21t)} 

a2 = C2f{[Ymax2 - CI YI(1l21 ai' Ill)] ~(21t)} 

1 no 
I conv~r_g_en_c~? 

Functional values Ylilax l' Ymax 2 and corresponding coordinates can be determined 
easily for the theoretical model (3) unaffected by random disturbances. When such 
disturbances occur individual points (Yi , Xi) are more or less dispersed on both sides 
of the assumed smoothed line. This can be observed in cases of histograms obtained 
from amplitude analysis of limited experimental data sets and from the time behaviour 
of output signals in cases of input-output experiments. Determination of peaks to be 
searched for is under such circumstances practically impossible both visually and 
numericaly. Smoothing of real frequency curves by a simple digital filter proved 
to be helpful in such cases. The digital filtering was aimed at the preliminary removal 
of the fluctuating component causing the data scattering while not transmitting 
any information in the modelled system. 

The simplest type of the digital filter removing the higher frequencies is the sum­
mation low-frequency filter which can be described by the equation 
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i = 1,3, ... , N 

j = 1,2, ... ,n 

where YFi is a filter output value in a discrete interval i; Yi + j is an input filtered value 
in a discrete interval i + j; h j is a weighting coefficient and n is a filter order. 
In the simplest case, the filter with constant weighting coefficients 

hi = Ij(2n + 1) = It (21 ) 

can be used for filtering. 

Such a summation-type filter lets only very slow signals (i.e. signals with frequency 
close to zero) pass through without an amplitude distortion. If therefore data con­
taining both the slow signal component, i.e. functional dependency (in out case 
the sum of the two distribution functions) and the fast component (fluctuations) 
are filtered, the functional dependence obtained is distorted by fluctuations which are 
significantly reduced by the summation filter used. Estimation of parameters of our 
model described by Eqs (13)-{19) is then applied to such smoothed data. In cases 
when only the position of a single peak is apparent from the graphic representation 
(or from the analysis of numerical data sequence) coordinates of the second mean 
value can be estimated e.g. according to the position of a fracture on the smoothed 
line of supposed shape (inflection etc.). In such a case the position of estimated 
mean value coordinates is given explicitely. 

The parameter estimates obtained as solutions of the optimization problems (2) 
or (5) have to be tested regarding their confidence region. On doing this it is assumed 
a priori that the data to be analyzed can be described by the model (3). The approxi­
mative confidence region of nonlinear model parameters can be obtained only from 
the linearized model; the linearization is performed in the vicinity of the vector 
of nonlinear model parameters6 • For a linear or linearized model respectively ex­
pressed by the relation 

n 

Yi = I6>/plxi) + e j ; i = 1,2, ... ,N 
j= 1 

(22) 

where Xi are values of an independent variable; Yi are values of a dependent variable 
i.e. experimental (measured) data; qJ j is a known function of X; 6> j is an un­
known parameter and ei is a measurement error and model disturbance 
a matrix equation can be written 

yeN, 1) = tP(N, n) B(n, 1) + e(N, 1) (23) 
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where 

(
4'l(Xl)' 4'2(xd, ... , 4'n(Xl)) 

cp = ~~~~~::. ~~~~.2?' ....... : .. ~~~~.2? ' 
4'1 (XN), 4'2(XN), ... , 4'n(XN) 

and N is a number of data pairs and n is a number of model parameters. 

Estimation of parameters @" by the least squares method is based upon the mini­
mization of the expression 

so that 

or 

(25) 

Supposing that cp and e are mutually independent then 

E{@"} = E{(cpTcptl cpTy} = E{(cpTcptl cpTcp@ + (cpTCPt l cpTe} = 

= E{@ + (CPTtl)tl tl)Te} = @ + (tl)Ttl)tl tl)TE{e} = @. (26) 

If cp and e are independent and ej are normally distributed with zero mean value 
and with a variance (/2 then 

(27) 

When the value of variance (/2 is unknown its estimate 

S2 = (Y- tl)@"Y(Y - CP@")!(N - n) (28) 

can be used. From Eqs (27) and (28) it follows then for the variance of parameters 
estimate 

(29) 
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The estimation of the confidence region for the parameters vector @" can be made 
using the so called Student test. The variable 

(30) 

is a random variable described by the Student distribution. For the given confidence 
level determined by the coefficient 0(, the inequality 

(31) 

can be written, where indices D and H denote lower and upper boundaries exceeded 
by the quantity t with 1000(% probability (for given number of degrees of freedom 
y = N - n). Linearization of our nonlinear model can be done in the vicinity 
of parameter values obtained by the optimization method for the nonlinear model. 
The first two terms of the Taylor expansion 

y(X) = y(xi @ = @") +.I (ay~x»)/ (ei - ~i) 
.=1 ae i 9=fJA 

(32) 

can be used for linearization. This model linearized in parameters is (as to its form) 
identical with the model (22), where @ is the vector of parameters of the linearized 
model from Eqs (25) and (26) and @" is the vector of parameters estimates obtained 
from the original nonlinear model. Our model - the mixture of the two normal 
istributions (3) can be written in a linearized form as 

y(x-) == C1 exp (_ (Xi - fil)2) + C2 exp (_ (Xi - fi2Y) + 
• J(2rt) U 1 2fJ; J(2rt) U2 2u~ 

+ ay(x i)/ (e1 - (71) + ay(xi )/ (e2 - ( 2) + 
ae1 9=9' ae2 9=9' 

(33) 

where 

(34) 
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(35) 

(36) 

(37) 

The constant term of the Taylor expansion can be transferred to the left side 
of Eq. (33) and following relations can be written in agreement with the general 
relation (22) 

where 

RESULTS 

6 

Y;' = L cpjjB j (40) 
j= , 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

This part of the work is devoted to practical problems of smoothing of relative 
frequency curves by probability density functions. As the first step pf preliminary 
appreciation of a curve shape it is necessary to estimate if the curve can be described 
by the single probability density function or by the mixture of two probability 
density functions, having in a general case parameters C" C2 , 0'" 0'2' p" P2' If the 
experimental data curve exhibits a distinctive saddle between two peaks (after data 
filtering, if needed) the model of two distributions mixture can be expected to be 
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appropriate. Analogously this is true if an evident plateau can be observed on a single­
-peak curve. When such a saddle (plateau) is not apparent both models i.e. model 
of a single distribution or that of the mixture of two distributions, can be expected 
to fit the data. In such cases only the loss function values corresponding to data 
smoothing by the two models in question can be used as an exact criterion whereas 
the visual comparison of experimental curves with the model ones can be misleading 
in some cases. The theoretical curve of single normal distribution with parameters 
N(5; 2) can be e.g. approximated with the accuracy corresponding to the loss function 
value 10- 6 by the theoretical curve of the mixture of two normal distributions with 
parameters N 1(4'39; 1·90) and N 2 (5'61; 1'90), C1 = C2 = 0·5. The curves are 
practically undistinguishable even in the case of very fine graphical presentation. 
If however the order of calculation accuracy is increased gradually (which indeed 
results in a consequent decrease of the calculation speed) the solution of the problem 
approaches theoretical values and the curve can be identified as that of single distri­
bution. Even in cases when the hypothesis of the presence of two different distributions 
in data set concerned is not unambiguously supported by physical mechanism of the 
process, the experience obtained from the simulated data treatment suggest that it is 
considerably safer to start the determination of the initial approximation of para­
meters estimates assuming the two distributions existence. For the alternate initial 
assumption it has been proved that even when a distinctive plateau of the frequency 
curve can be observed the local loss function extreme corresponding to a single 
distribution curve can be obtained as the solution. Selection between the two types 
of models has to be based therefore upon a rigorous analysis of the problem to be 
solved. 

The distinguishability of the model of a two distributions mixture depends on rela­
tions between Ap. and the magnitude of 0" I' 0" 2 on one hand and on relation between 
C 1 and C2 on the other hand. It has however to be pointed out that the effect of indi­
vidual factors is always displayed simultaneously in an increased extent. As a general 
rule, the ability of model recognition increases with increasing Ap. while decreasing 
steeply with increasing 0'1' 0"2' Considering the isolated effect of C 1 and C 2 only, 
the equality C1 = C2 = 0·5 can be postulated as the best distinguishability condition. 
The condition (12) (in the symmetrical case 0'1 = 0"2 and C1 = C2) can be used as 
an approximate criterion of distinguishability, the controlling calculations proved 
however that the distinguishability demanded could be reached even when the condi­
tion (12) was not fulfilled. Apart from the effect of factors mentioned above, the 
influence of random disturbances was further studied, as caused by experimental 
errors and/or by the insufficient quality of a frequency curve (histogram) due to im­
properly chosen frequency class width. The existence of such random disturbances 
makes the distinguishability problem even more complicated. 

Results of some typical problems of the estimation of parameters of a two normal 
distributions mixture are presented in Table I. Except for experiments 9 and 10 
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TABLE I 

Parameters estimation results 
------- ~-- --

Experiment Data type C1 Cz fil fi2 a 1 a2 F(P) NFEh 

- ---- ---~- -

Id 0·50 0·50 3·00 7·00 )·00 1·00 
2e 0·50 0·50 3·00 7·00 ),00 1·00 

) A a 3f 0·50 0·50 3·00 7·00 )·00 1·00 0·5-07 
49 0·00 0·00 0·00 0·00 0·00 0·00 

0·50 0·50 3·00 7·00 1·00 1·00 
2 0·50 0·50 3·01 7·03 0·99 0·00 

1 Bb 3 0·50 0·50 3·01 7·03 0·99 0·98 0·4-02 80 
4 0·02 0·02 0·04 0·04 0·05 0·05 

0·50 0·50 3·00 7·00 2·00 2·00 
2 0·49 0·51 2·98 6·98 1·99 2·01 

2A 3 0·50 0·50 3·00 7·00 2·00 2·00 0·2-06 116 
4 0·00 0·00 0·00 0·00 0·00 0·00 

0·50 0·50 3·00 7·00 3·00 3·00 
2 0·50 0·50 3·00 7·00 3·00 3·00 

3A 3 0·50 0·50 3·01 7·01 3·00 3·00 0·6-07 22 
4 0·04 0·04 0·14 0·15 0·04 0·04 

0·90 0·10 3·00 7·00 1·00 1·00 
2 0·90 0·10 3·00 7·00 )·00 1·00 

4A 3 0·90 0·10 3·00 7·00 )·00 1·00 0'7-07 
4 0·00 0·00 0·00 0·00 0·00 0·00 

1 0·90 0·10 3·00 7·00 1·00 1·00 
2 0·91 0·09 3·0) 7·14 ),00 0·85 

4B 3 0·90 0·09 3·01 7·13 )·00 0·86 0'4-02 82 
4 0·02 0·02 0·02 0·18 0·02 0·19 

0·90 0·10 3·00 7·00 ),30 1·30 
2 0·90 0')0 3·00 6·99 1·30 1·32 

5A 3 0·90 0·10 3·00 7·00 1·30 1·30 0'3-05 36 
4 0·00 0·00 0·00 0·00 0·00 0·00 

0·90 0·10 3·00 7·00 ),30 1·30 
2 0·90 0·10 3·02 7,)9 1·29 1·19 

5B 3 0·90 0·09 3·02 7·18 1·29 1·17 0'4-02 238 
4 0·03 0·03 0·04 0·36 0·05 0'38 

1 0·50 0·50 3·00 7·00 0·50 2·00 
2 0·50 0·50 3·00 7·00 0·50 2·00 

6A 3 0·50 0·50 3·00 7·00 0·50 2·00 0·2-06 141 
4 0·00 0·00 0·00 0·00 0·00 0·00 

--------- ---
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TABLE I 

( Continued) 

Experiment Data type C l C2 III III 0'1 0'2 F(P) NFEh 

0·50 0·50 3·00 7·00 0·50 2·00 
2 0·51 0-49 3·00 7·07 0·51 0·97 

6B 3 0·51 0·50 3·00 7·07 0·51 1·98 0'4-02 179 
4 0·02 0·04 0·02 0·14 0·02 0·19 

I 0·50 0·50 3·00 4·00 0·50 0·50 
2 0·51 0·49 3·00 4·00 0·51 0·50 

7A 3 0·50 0·50 3·00 4·00 0·50 0·50 0,1-04 56 
4 0·00 0·00 0·00 0·00 0·00 0·00 

1 0·50 0·50 3·00 4·00 0·50 0·50 
2 0·50 0·50 2·99 4·00 0·51 0·50 

7B 3 0·49 0·51 2·99 3·99 0·50 0·50 0'4-02 96 
4 0·13 0·13 0·\2 0·11 0·06 0·06 

0·10 0·90 3·00 4·00 0·40 2·00 
2 0·10 0·90 3·00 4·00 0·04 2·00 

8A 3 0·10 0·90 3·00 4·00 0·40 2·00 0'1-05 329 
4 0·00 0·00 0·00 0·00 0·00 0·00 

0·10 0·90 3·00 4·00 0·40 2'00 
2 O'll 0·89 2-99 4·04 0·45 2·00 

8B 3 O'll 0·87 2·98 4·04 0·46 1·98 0,4-02 359 
4 0·02 0·04 0·06 0·09 0·07 0·08 

1 
2 0·44 0·56 4·78 5·59 0·56 0·22 

9 Cc 3 0·52 0·54 4·80 5·60 0·63 0·21 0'3-01 219 
4 0·09 0·08 0·13 0·01 O'll 0·02 

2 0·61 0·39 4·61 5·94 0·94 0·25 
IOC 3 0·66 0·37 4·65 5·94 1·00 0·25 0,3-01 165 

4 0·09 0·06 0'15 0·02 0·14 0·03 

"Theoretical values; b theoretical values with superposed noise 0'01; c real data (experiment 
9-27 frequency classes, experiment 10-40 frequency classes); d theoretical value; e calculated 
value (from the original model); f calculated value (from the linearized model); 9 reliability 
interval (for the linearized model) at oc = 0·05; h number of function evaluation in optimization. 
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dealing with real data from a fluidized-bed reactor, all other data were simulated 
on the calculator. The simulation was carried out for mixtures of two theoretical 
curves at two noise levels 0·00 and 0·01. Higher noise levels than the defined level 
0·01 do not fulfil conditions of proper histogram formation (too low frequency 
in individual classes). Fifty values were used in all cases for simulated data, corres­
ponding to 50 classes in a real histogram. It has to be remembered that the smoothness 
of frequency curves can be up to a certain level raised by the use of smaller class 
number i.e. by the frequency increase in individual classes. Parameters of the theore­
tical model of mixtures of two normal distributions were chosen with respect to the 
maximum distinguishability proof (i.e. even for the cases when condition (12) is not 
fulfilled) considering further all possible shapes of histograms from real data. It was 
observed that in problems with simulated data the noise in the cases of short realiza­
tions ( 50 values) could cause systematic deviations in the shape of probability curves. 
The loss function value was therefore in the cases of such curves with noise systemati­
cally lower for parameter estimates obtained than for curves with the theoretical 
parameters values. 

Initial parameter approximations for the optimization procedure application 
were determined using the procedure described in the theoretical part (Eqs (13) - (19)). 
In Table I four values are given for each parameter, individual values corresponding 
to the theoretical value, to the values calculated for the original model and for the 
linearized model respectively and to the confidence interval for IX = 0·05 (calculated 
from the linearized relation). Despite the fact that the reliability intervals (±) were 
determined only indirectly they can be used with a sufficient accuracy for the charac­
terization of reliability of the calculated nonlinear model parameters. Three types 
of problems can be distinguished in Table I. The first type of problems deals with sym­
metrical cases (C 1 = C 2 and a1 = 0' J, the second type includes asymmetrical cases 
and the problems of the third type are the real data problems. Figs 2 and 4 show 
cases when All = 20', Fig. 3 corresponds to the case All < 2a. The asymmetrical 
cases shown in Fig 5 and 6 correspond approximately to the symmetrical cases 
for All ~ 2a. In all problems tested, the parameters were determined with accuracy 
of two decimal points. Such an accuracy represents a certain compromise between 
possible practical demands on the reliability of obtained results and a reasonable 
calculation time. Number of determinations of F(P) values ranged for optimization 
procedures between 1 and 330 for the theoretical curves without any noise and between 
80 and 440 for the curves with noise; lower values were obtained for curves with 
distinct peaks around both mean values, the higher values correspond to single-peak 
curves. The frequency curves and curves of probability densities with calculated 
parameters are presented in Figs 2 - 8. An illustrative example of a smoothed fre­
quency curve after the numerical data filtration is further given in Figs 2b, 3b, 4b, 
5b and 6b. The original histograms are shown in Figs 7 and 8 representing results 
obtained from experimental data. These experimental data were obtained from 
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pressure fluctuation measurements carried out on the fluidized-bed reactor described 
elsewhere4 . 

CONCLUSION 

An extensive set of simulation calculations proved that the effectiveness of the proce­
dure suggested depends on the choice of initial approximations as in all cases the 
existence of several local extremes of the minimized loss function can be expected 
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FIG. 2 

Probability density function - parameters estimation. Symmetrical case; !+..J.l = 217; + original data; 
filtered data; - fitted curve; a noise level 0'00 (Exp. 2A); b noise level 0'01 (Exp. 2B) 
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Probability density function - parameters estimation. Symmetrical case; !+..J.l = 217; + original data; 
rJ filtered data; - fitted curve; a noise level 0·00 (Exp. 3A); b noise level 0·01 (Exp. 3B) 

Collection Czechoslovak Chern. Commun. [Vol. 491 [19841 



Parameters of the Mixture of Two Normal Distributions 1489 

due to the high nonlinearity of the problem solved. The strategy of initial approxima­
tions choice utilized the numerical pre-filtration of histogram values or response 
curves and a subsequent choice of initial approximations of mean values according 
to the position of apparent peaks of the distribution mixture and of proportionality 
constants derived from them on the basis of ratios of segments of subintegral areas. 
Using such strategy, the extreme to be looked for could be found in all cases after 
a reasonable number of iterations. In the case when original curve did not indicate 
the presence of two distributions in the mixture, it was always useful to expect 
it as the calculation algorithm ensured in such a case even a reliable determination 
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FIG. 4 

Probability density function - parameters estimation. Asymmetrical case; t'1.p. = 2u; + original 
data; ::J filtered data; - fitted curve; Q noise level 0·00 (Exp. SA); b noise level 0'01 (Exp. 58) 
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FIG. 5 

Probability density function - parameters estimation. Asymmetrical case; + original data; 0 filte­
red data; - fitted curve; a noise level 0'00 (Exp. 7 A); b noise level 0'01 (Exp. 78) 
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of the estimates of a single distribution parameters. In the opposite case, however, 
i.e. when the single distribution was assumed at the beginning, the resolution desired 
could never be reached. 

The procedure suggested in this work can be used even for the evaluation of pre­
-treated data accessible in the form of histograms (data from amplitude analysers) 
or response curves. In this respect it is superior to procedures described in literature 
which are based upon moments of ~igher orders. Such procedures require calcula-
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FIG. 6 

Probability density function - parameters estimation. Asymmetrical case; + original data; 0 fil­
tered data; - fitted curve; a noise level 0·00 (Exp. SA); b noise level 0·01 (Exp. SB) 
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FIG. 7 

Probability density function - parameters 
estimation. Experimental data from a fluidi­
zed bed reactor (Exp. 9); original data (histo­
gram); 0 filtered data; - fitted curve 
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FIG. S 

Probability density function - parameters 
estimation. Experimental data from a fluidi­
zed bed reactor (Exp. 10); original data 
(histogram); 0 filtered data; - fitted curve 
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tion of the higher order moments from original data in order to provide a good 
accuracy of estimates. The procedure presented in this paper can be recommended 
for routine evaluation on desk calculators considering both the comparatively low 
demands on the memory capacity and the calculation speed requirre. 

LIS T OF SYMBOLS 

x independent variable 
'/ dependent model variable 
y dependent regression line variable 
Y dependent experimental data variable 
e random disturbance 
c residue 
C proportionality coefficient 
Ii mean val ue 
(f standard deviation 
F loss function 
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